Analysis of Lattice Boltzmann Boundary Conditions
نویسنده
چکیده
In this dissertation, we investigate a class of standard linear and nonlinear lattice Boltzmann methods from the point of view of mathematical analysis. First we study the consistency of the lattice Boltzmann method on a bounded domain by means of asymptotic analysis. From the analysis of the lattice Boltzmann update rule, we find a representation of the lattice Boltzmann solutions in form of truncated regular expansions, which clearly exhibit the relation to solutions of the Navier-Stokes equation. Through the analysis of the initial conditions and the well-known bounce back boundary rule, we demonstrate the general procedure to integrate the boundary analysis process in the whole analysis, and find that our approach can reliably predict the accuracy of the lattice Boltzmann solutions as approximations to Navier-Stokes solutions. Next, a rigorous convergence proof is achieved for the class of standard linear and nonlinear lattice Boltzmann methods considered in this thesis. Concentrating on realizations of Dirichlet velocity boundary conditions, we then investigate the consistency of several existing implementations, predict their accuracy, and their advantages and shortcomings. In order to overcome a general drawback of the methods, we construct a class of purely local boundary treatments. All of these methods lead to a second order accurate velocity and a first order accurate pressure. A careful numerical comparison of their properties such as stability, mass conservation and error behavior is presented, as well as a guide for choosing a boundary implementation among the various possibilities. Regarding Navier-Stokes outflow conditions which are hardly studied in the lattice Boltzmann literature, we deal with three kind of Neumann-type conditions. We have proposed their implementations in the lattice Bolzmann framework, and briefly carry out their consistency analysis. Several numerical results demonstrate the capability of these outflow treatments. For the unsteady benchmark problem like flows around fixed cylinders in an infinitely long channel, the proposed do-nothing and zero normal stress conditions perform very well. For the steady flow, all of the methods produce convincing results.
منابع مشابه
A Comparative Solution of Natural Convection in an Open Cavity using Different Boundary Conditions via Lattice Boltzmann Method
A Lattice Boltzmann method is applied to demonstrate the comparison results of simulating natural convection in an open end cavity using different hydrodynamic and thermal boundary conditions. The Prandtl number in the present simulation is 0.71, Rayleigh numbers are 104,105 and 106 and viscosities are selected 0.02 and 0.05. On-Grid bounce-back method with first-order accuracy and non-slip met...
متن کاملNumerical analysis of gas flows in a microchannel using the Cascaded Lattice Boltzmann Method with varying Bosanquet parameter
Abstract. In this paper, a Cascaded Lattice Boltzmann Method with second order slip boundary conditions is developed to study gas flows in a microchannel in the slip and transition flow regimes with a wide range of Knudsen numbers. For the first time the effect of wall confinement is considered on the effective mean free path of the gas molecules using a function with nonconstant Bosanquet para...
متن کاملThe effect of boundary conditions on the accuracy and stability of the numerical solution of fluid flows by Lattice-Boltzmann method
The aim of this study is to investigate the effect of boundary conditions on the accuracy and stability of the numerical solution of fluid flows in the context of single relaxation time Lattice Boltzmann method (SRT-LBM). The fluid flows are simulated using regularized, no-slip, Zou-He and bounce back boundary conditions for straight surfaces in a lid driven cavity and the two-dimensional flow ...
متن کاملA Simplified Curved Boundary Condition in Stationary/Moving Boundaries for the Lattice Boltzmann Method
Lattice Boltzmann method is one of computational fluid dynamic subdivisions. Despite complicated mathematics involved in its background, end simple relations dominate on it; so in comparison to the conventional computational fluid dynamic methods, simpler computer programs are needed. Due to its characteristics for parallel programming, this method is considered efficient for the simulation of ...
متن کاملImplementation of D3Q19 Lattice Boltzmann Method with a Curved Wall Boundary Condition for Simulation of Practical Flow Problems
In this paper, implementation of an extended form of a no-slip wall boundary condition is presented for the three-dimensional (3-D) lattice Boltzmann method (LBM) for solving the incompressible fluid flows with complex geometries. The boundary condition is based on the off-lattice scheme with a polynomial interpolation which is used to reconstruct the curved or irregular wall boundary on the ne...
متن کاملInvestigation on Instability of Rayleigh-Benard Convection Using Lattice Boltzmann Method with a Modified Boundary Condition
In this study, the effects of Prandtl number on the primary and secondary instability of the Rayleigh-Benard convection problem has been investigated using the lattice Boltzmann method. Two different cases as Pr=5.8 and 0.7 representing the fluid in liquid and gas conditions are examined. A body forces scheme of the lattice Boltzmann method was presented. Two types of boundary conditions in the...
متن کامل